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Abstract 7 

 8 
We introduce a new workflow for analysing archaeological frequency data associated with 9 
relative rather than absolute chronological time-stamps. Our approach takes into account 10 
multiple sources of uncertainty by combining Bayesian chronological models and Monte-Carlo 11 
simulation to sample possible calendar dates for each archaeological entity.  We argue that 12 
when applied to settlement data, this combination of methods can bring new life to 13 
demographic proxies that are currently under-used due to their lack of chronological accuracy 14 
and precision, and provide grounds for further exploring the limits and the potential of the so-15 
called ³dates as data´ approach based on the temporal freqXenc\ of radiocarbon dates. Here 16 
we employ this new workflow by re-examining a legacy dataset that has been used to describe 17 
a major population rise-and-fall that occXrred in central Japan dXring the Jǀmon period (16,000 18 
- 2,800 cal BP), focusing on the temporal window between 8,000 and 3,000 cal BP. To achieve 19 
this goal we:  1) construct the first Bayesian model of forty-tZo Jǀmon ceramic t\polog\ based 20 
cultural phases using a sample of 2,120 radiocarbon dates; 2) apply the proposed workflow 21 
on a dataset of 9,612 Jǀmon pit-dwellings; and 3) compare the output to a Summed Probability 22 
Distribution (SPD) of 1,550 radiocarbon dates from the same region. Our results provide new 23 
estimates on the timing of major demographic flXctXations dXring the Jǀmon period and reYeal 24 
a generally good correlation between the two proxies, although with some notable 25 
discrepancies potentially related to changes in settlement pattern. 26 

Key Highlights 27 

● A new approach for characterising temporal frequency of archaeological data is 28 
proposed.   29 

● The first Ba\esian chronological model of Jǀmon phases is presented. 30 
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probability distribution of radiocarbon dates. 34 
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Introduction 39 

The last decade witnessed an increasing number of synthetic research studies (Kintigh et al. 40 
2014) where legacy archaeological data, originally collected for different purposes, have been 41 
brought together for new purposes. Given the finite nature of the archaeological record 42 
(Surovell et al. 2017), it is our collective responsibility to identify opportunities for data reuse, 43 
as well as tackle the new types of methodological and theoretical hurdles prompted by this 44 
task (Bevan 2015, Huggett 2020). Perhaps one of the best examples of such new challenges 45 
is the reuse of large collections of radiocarbon dates as a proxy of prehistoric demographic 46 
changes. This approach, often referred to as dates as data (Rick 1987), has grown rapidly in 47 
its number of applications during the last decade (e.g. Shennan et al. 2013, Crema et al. 2016, 48 
Zahid et al. 2016, Bevan et al. 2017, Riris 2018 etc.), thanks to the increased availability and 49 
accessibility of radiocarbon databases (e.g. Chaput and Gajewski 2016, Manning et al. 2016, 50 
Lucarini et al. 2020) and the parallel development of a suite of new statistical techniques 51 
designed to handle such data (Brown 2017, Crema et al. 2016, Crema et al. 2017, Bronk 52 
Ramsay 2017, Timpson et al. 2014, McLaughlin 2018, etc.).  53 
 54 
The dates as data approach is, however, not immune to criticisms. Its core assumption (more 55 

people ൺ more dateable samples ൺ more radiocarbon dates) has been criticall\ discussed 56 

since its inception (see fig.1 in Rick 1987), and several issues have been put forward in the 57 

last decade, from the false signals linked to sampling error and the calibration process to 58 

deeper concerns on the very nature of the proxy itself (e.g. Attenbrow and Hiscok 2015, 59 

Contreras and Meadows 2014, Freeman et al. 2018, Torfing 2015, Williams 2012, Weninger 60 

et al. 2015). While methodological advances have solved many of these challenges, some 61 

remain sceptical of the usefulness of the whole enterprise. There is, however, a consensus 62 

amongst practitioners (and critics), that prehistoric population reconstructions should be based 63 

on multiple proxies rather than be exclusively reliant on the density of radiocarbon dates. 64 

Nonetheless, examples are limited (but see Cromb« and Robinson 2014, Downe\ et al. 2014, 65 

Palmisano et al. 2017, Tallavaara and Pesonen 2018, Feeser et al. 2019), as most alternative 66 

proxies in prehistoric contexts do not offer comparable chronological precision and accuracy 67 
to radiocarbon dates. As a consequence, more traditional and perhaps more direct lines of 68 
evidence such as site and dwelling counts have been underused due to their temporal 69 
definition being based on attributions to cultural phases rather than absolute dates (but see 70 
Oh et al. 2017). 71 
 72 

Uncertainties in Archaeological Periodisations 73 

In order to be able to use proxies that are exclusively defined by chrono-typological phases, 74 
we need to be able to assign to each calendar date t a probability of occurrence P(t) of an 75 
archaeological event. The objective is thus fundamentally equivalent to the calibration of 76 
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radiocarbon dates; both measure some physical properties (amount of 14C isotope vs 77 
diagnostic traits on artefacts) linked to the flow of time through some process (radiocarbon 78 
decay vs cultural transmission) and make use of a statistical model that combines different 79 
sources of uncertainty to yield a probabilistic estimate of when a particularly event has 80 
occurred (e.g. making a ceramic vessel). In the case of radiocarbon calibration, these are 81 
measurement errors in the sample and the uncertainties associated with the calibration curve. 82 
In the case of archaeological periodisation, we need to take into account three interrelated 83 
forms of uncertainty.   84 
 85 
The first one, which we will refer here to as within-phase uncertainty, is how we define the 86 
shape of the probability density function within the archaeological period assigned to a 87 
particular event. In other words, how we describe the change of P(t) when t is within a 88 
particular phase? For example, if an event is assigned to a phase dated between 700 and 300 89 
BC, what is the probability that the event occurred in the year 354 BC? While ultimately the 90 
selection of the most appropriate probability density function is context-dependent, there have 91 
been some discussions on what shape we should assume a priori. Proponents of aoristic 92 
analysis (e.g. Johnson 2004, Crema 2012, Orton et al. 2017) suggest a uniform distribution, 93 
and hence would assign a constant probability within the archaeological phase (thus for the 94 
example above, P(t=354 BC) would be equal to 0.0025, or 1/400). Crema (2012) justifies this 95 
shape invoking the principle of insufficient reason: in the lack of any additional knowledge, we 96 
should assume that all years have equal probabilities. This assumption may be valid in crime 97 
science (where the aoristic analysis was originally developed, see Ratcliffe and McCullagh 98 
1998), and perhaps in some historical contexts where an ensemble of chrono-typological, 99 
dendrochronological, numismatic, and historical dates are available. However, for prehistoric 100 
chrono-typological phases, there is a reasonably large number of theoretical and empirical 101 
studies (e.g. Rogers 1962, Christenson 1994, Neiman 1995, Lyman and Harpole 2002, 102 
Manning et al. 2015, Kandler and Crema 2019, etc.) that suggest a unimodal curve of a rise 103 
and fall in popXlarit\ (referred to as popXlarit\ principle; see O¶Brien and L\man 2000) to be 104 
more appropriate. The literature on chronological apportioning, which deals with similar 105 
problems, has indeed adopted such assumption by using probability distributions such as the 106 
Chi-square (Carlson 1983), the Gamma (Steponaitis and Kintigh 1993), the Beta (Baxter and 107 
Cool 2016), and the normal distributions (both in its truncated or non-truncated forms; Carlson 108 
1983, Bellanger and Husi 2012, Roberts et al. 2012, Baxter and Cool 2016). These 109 
alternatives reflect both the general agreement on the unimodal shape and the more context-110 
specific debate on whether the rise and fall in popularity should be assumed to be symmetric 111 
or not, or whether there should be flexibility in capturing variation in the kurtosis.  112 
 113 
The second form of uncertainty is determined by how we define the membership of a particular 114 
archaeological event to a given archaeological phase or period. This type of uncertainty (see 115 
Bevan et al. 2012, Crema 2015 for review), which will refer here to as phase assignment 116 
uncertainty, is conditioned by the nature of the diagnostic elements used by archaeologists to 117 
associate a particular artefact to an archaeological phase. An event can thus be assigned to 118 
one or more phases or subphases, with potentially high levels of non-random inter-observer 119 
errors (see Bevan et al. 2012 for an example involving potsherd recovered in survey contexts). 120 
Phase assignment uncertainty is effectively linked with within-phase uncertainty, as one could 121 
argue that P(t) could be described by a mixture model with k probability density functions, 122 
each with a mixture weight which are probabilities that sum to unity. The parameter k will thus 123 
represent the range of possible chrono-typological phases, and the weights would represent 124 
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our degree of belief of a focal event being assigned to each. Estimates of the mixture weights 125 
could potentially be derived from properties of the diagnostic elements (see for example Bevan 126 
et al. 2012), but in the majority of cases these are unlikely to be reported (i.e. most 127 
archaeologists will report ³phase A a phase B´, rather than ³70% phase A and 30% phase B´). 128 
It is an open question on whether in the absence of precise mixture weights one should 129 
assume them to be uniformly distributed, proportional to the duration of each phase (e.g. if 130 
phase B has three times the duration of phase A, wA should be equal to 0.25 and wB equal to 131 
0.75), or based on observed frequencies of artefacts assigned to each phase (cf Ortman 132 
2014).  133 
 134 
The third form of uncertainty is determined by how the phases themselves are dated. Can we 135 
be confident that the phase to which we assigned our event is precisely dated between 700 136 
and 300 BC, rather than 711 and 298 BC? In essence, such phase boundary uncertainty is 137 
associated with our uncertainty in defining the parameters of the probability density function 138 
describing each phase. Nearly three decades of Bayesian chronological models of 139 
radiocarbon dates (Buck et al. 1992, Ziedler et al. 1998, Bronk Ramsey 2009a) have dealt 140 
with this problem, enabling archaeologists to infer parameters for a variety of distributions 141 
(including flexible options such as the trapezoidal distribution, Lee and Bronk Ramsey 2012), 142 
as well as to incorporate various assumptions in the form of priors and constraints.  143 
 144 
Thus, there is a substantial body of archaeological work that tackles these three forms of 145 
uncertainties, but little to no attempt has been made to take them into account at the same 146 
time. We argue that such partial treatment can lead to substantial biases when examining 147 
frequency data. For example, handling within-phase uncertainty but ignoring phase boundary 148 
uncertainty might potentially lead to the false impression that significant changes in temporal 149 
frequencies occur at precise intervals corresponding to boundaries between archaeological 150 
phases1.  151 
 152 
The solution proposed in this paper expands the Monte-Carlo approach developed initially in 153 
Crema 2012 by utilising Bayesian posterior samples of phase parameters. This effectively 154 
involves simulating n possible dates of archaeological events by iteratively: 1) sampling a  155 
random start and end date of the assigned phase(s) (phase boundary uncertainty); 2) 156 
randomly assign the even to a unique phase (phase assignment uncertainty); and 3) randomly 157 
sample a possible date within such phase (within-phase uncertainty). In order to enable full 158 
reproducibility (Marwick 2017), details of this procedure, as well as the R and OxCal scripts 159 
utilised for the case study, are available on the following GitHub repository:  160 
https://github.com/ercrema/jomonPhasesAndPopulation as well as on zenodo: 161 
https://doi.org/10.5281/zenodo.3719507 162 

CaVe SWXd\: JǀPRQ ChURQRORg\ aQd DePRgUaSh\ 163 

The Jǀmon culture (16,000 - 2,800 cal BP) offers one of the best researched prehistoric 164 
hunter-gatherer traditions known to archaeology, thanks to the exceptionally high volume of 165 
rescue archaeology in Japan (Habu and Okamura 2017) combined with the rare opportunity 166 
                                                
1 It is also worth noting here that while the formal definitions of these different forms of chronological uncertainties 
are pivotal in designing the solution detailed below, we are not implying here an essentialist approach towards 
typological phases, but rather acknowledge them as useful abstractions that capture observed continuous 
variations of diagnostic elements and their relation to the flow of time. 
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to rely on a ceramic-based chrono-typological sequence. The latter in particular has been 167 
central to Japanese archaeology, and nearly a century of painstaking research has led to the 168 
creation of detailed regional and sub-regional sequences. As a result, archaeologists utilise 169 
more often such relative sequences, rather than absolute calendar dates, when referring to 170 
key episodes and events within the Jǀmon period.  171 
 172 
Given its time span of over 10,000 years, it is perhaps unsurprising that the Jǀmon period was 173 
characterised by multiple episodes of population booms and busts, typically inferred from 174 
fluctuations in the number of residential units (pit-dwellings) and archaeological sites. Early 175 
works (Koyama 1978) have initially identified major regional trends (a slow rise in the 176 
Southwest, a rise and fall in the centre, and rise followed by a plateau in the North) at a 177 
millennial-scale. However, subsequent studies based on chrono-typological sequences (e.g. 178 
Imamura 1997, Shitara 2004, Sekine 2014, etc.) have revealed a much more complex picture, 179 
with multiple fluctuations and further regional and sub-regional variation in the demographic 180 
trajectories. These studies provide a much-refined perspectiYe on Jǀmon demograph\, 181 
potentially capturing key processes such as population dispersal and differences in local 182 
adaptive strategies to environmental change. However, the over-reliance on ceramic-based 183 
chronology severely limits the possibility to explore these hypotheses by, for example, 184 
comparing these dynamics to climatic data, or to infer key measures such as population 185 
growth rate accurately. The dates as data provide one way to overcome these issues (see 186 
Crema et al 2016 for an application on Jǀmon data) but should ideally be coupled with 187 
alternative proxies to evaluate its robustness as a measure of past demographic change. 188 
 189 
Assigning absolute calendar dates to the Jǀmon chrono-typological sequence is thus an 190 
important step for further exploring its population dynamics, and at the same bring in additional 191 
lines of evidence to test specific hypothesis linked to social, economic, and cultural factors. 192 
This objective becomes even more appealing if we consider that the total number of chrono-193 
typological phases and sXbphases across the entire length of the Jǀmon period is easily above 194 
100 (cf. Kobayashi, T. 2008). This fine-grained scheme had led some scholars to suggest that 195 
the duration of several phases might be less than 100 years (e.g. Kobayashi, K 2008), an 196 
unmatched resolution for prehistoric hunter-gatherers. However, attempts to construct an 197 
absolute chronological framework for these ceramic phases have been comparatively limited. 198 
Most studies have focused on the visual display of calibrated radiocarbon dates associated 199 
with key ceramic phases, which has already revealed putative relationships between major 200 
cXltXral and climatic eYents throXghoXt the Jǀmon period (e.g. KXdo 2007).  201 
 202 
More recently, Kobayashi (2008, 2017) has collated and analysed a sample of over 3,200 203 
radiocarbon dates to develop an absolute chronology of the start and end dates of major 204 
Jǀmon ceramic phases. Kobayashi¶s chrono-typological sequence has subsequently been 205 
used to construct time-series of residential units counts for different regions (Kobayashi, K. 206 
2008, Crema 2012, Crema 2013), confirming the existence and assessing the timing of at 207 
least three c\cles of popXlation rise and fall betZeen the Earl\ and the Late Jǀmon periods 208 
(ca 7000- 3200 cal BP) in central Japan.  209 
 210 
HoZeYer, Koba\ashi¶s seqXence assumes perfectly abutting phases (i.e. the start of a ceramic 211 
phase coincides to the end of the previous phase), no uncertainty in the dates, and an agnostic 212 
view on the within-phase uncertainty. As a consequence, some analyses showed a false 213 
impression of high accuracy and precision when abrupt changes in the number of residential 214 
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units were recorded between chronologically adjacent phases. To overcome this issue, here 215 
Ze model Jǀmon ceramic phases allowing for overlaps and model the within-phase 216 
uncertainty using the trapezoidal distribution. The latter allows to take into the assumption of 217 
a rise and fall pattern in the popularity of cultural traits while allowing for the flexibility to take 218 
different shapes (see Lee and Bronk-Ramsey 2012). We employ Bayesian inference to fully 219 
take into account the uncertainty in the estimates of model parameters and use a nested form 220 
of Monte-Carlo simulation to sample absolute calendar dates of archaeological events while 221 
taking into account all three forms of uncertainty described above.  222 
 223 
Our case study re-examines a dataset of Jǀmon pit-dwellings from southwest Kanto (Saitama, 224 
Tokyo, and Kanagawa prefectures) and Chubu Highlands (Nagano and Yamanashi 225 
prefectures) in central Japan as a case study. The dataset has been originally studied by 226 
Imamura (1997) and re-examined by Crema (2012). We then compare the time-series of 227 
residential frequencies we obtained from the two regions to the summed probability distribution 228 
(SPD) of radiocarbon dates from the same area, examining, in particular, the timing of the 229 
Middle Jǀmon rise-and-fall, the largest demographic fluctuation recorded in this area during 230 
the Jǀmon period. GiYen the smaller nXmber sample si]e for earlier periods we focus on the 231 
interval between 8,000 and 3,000 cal BP, corresponding approximately to the latter half of the 232 
Initial Jǀmon to the end of the Final Jǀmon period.  233 

Materials 234 

We collated radiocarbon dates Zith knoZn association to Jǀmon ceramic phases by 235 
augmenting an existing database created by one of us (see Kobayashi 2017). The initial 236 
dataset has been cleaned by removing duplicates, samples with incomplete information, as 237 
well as dates from specimens with suspected marine reservoir effect. The resulting, final 238 
dataset consisted of 2,120 radiocarbon dates from 447 archaeological sites across Japan (see 239 
electronic sXpplementar\ table 1). We Xsed a reYised form of Koba\ashi¶s ceramic phases 240 
(Table 1; see also Kobayashi 2017) by aggregating shorter and small-sampled sub-phases 241 
together. The resulting sequence comprised 42 ceramic phases covering the entire 242 
chronological span of the si[ major Jǀmon periods (Initial, Incipient, Earl\, Middle, Late, and 243 
Final Jǀmon). Samples of soot and organic residXes taken from the same Yessel Zere 244 
combined Xsing O[Cal¶s R_Combine function under the assumption that the dates were 245 
associated with the same calendar year.  246 
 247 
The residential data Xsed b\ ImamXra¶s (1997) and Crema¶s (2012) stXd\ Zas collated b\ 248 
digitising summary tables from Suzuki (2006). This consisted of dwelling counts organised by 249 
ceramic phases with different degrees of uncertainty ranging from associations to a single 250 
phase to as many as 14 phases (see Crema 2012 for an extensive discussion). The 9,612 251 
Jǀmon pit-dwellings in the dataset were collated from Yamanashi (n= 501), Tokyo (n=2,221), 252 
Saitama (n=1,748), Kanagawa (n=2,724), and Nagano (n=2,418) prefectures in central Japan. 253 
The sample includes few pit-dZellings dated to the Incipient, Initial, and Final Jǀmon periods 254 
which are outside the temporal window of analyses in the majority of the Monte-Carlo samples 255 
of ceramic phase start and end dates. Nonetheless, we decided to keep the entire dataset, as 256 
this has no impact in the approach we employed other than the frequency time-series being 257 
composed of slightly different sample sizes for each Monte-Carlo iteration.  258 
 259 
For the SPD analysis, we collated a total of 2,544 radiocarbon dates from 370 sites located in 260 
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the same regions haYe been retrieYed from the National MXseXm of Japanese Histor\¶s 261 
radiocarbon database (Kudo 2017, URL: https://www.rekihaku.ac.jp/up-262 
cgi/login.pl?p=param/esrd/db_param, electronic supplementary table 2).  The initial data 263 
obtained from the online query included all dates associated with terrestrial and marine 264 
samples attribXted to the Jǀmon period from the fiYe prefectXres. We excluded, from this initial 265 
set, duplicates, dates from bones with unknown impact of reservoir effect (n=13), as well as 266 
samples with a 14C age outside the bracket 7,500 ~ 2,500 14C Age (ca. 8000 ~ 3000 cal BP).  267 
The final dataset consisted of 1,550 radiocarbon dates from 283 sites, with 77 dates also 268 
included in the samples used for the Bayesian chronological modelling.  269 

[TABLE 1 HERE] 270 

Table 1 Correspondence between different nomenclature of ceramic phases and associated 271 
sample size of radiocarbon dates (n = number of radiocarbon dates, n(eff.) = number of 272 
radiocarbon dates associated to different specimens; and Sites = number of archaeological 273 
sites from which samples were recovered). * Kasori E ceramic phases have two distinct 274 
classifications using Arabic and Roman numerals (see detailed review in Toda 1999). 275 

 276 

Methods 277 

Bayesian Chronological Modelling 278 

We fitted trape]oidal models (Lee and Bronk Ramse\ 2012) to the 42 Jǀmon ceramic phases 279 
using OxCal v.4.3 (Bronk Ramsey 2009a) and bespoke R scripts to handle input/output via 280 
the oxcAAR v1.0 R package (Hinz et al. 2018). The choice of the trapezoidal model over other 281 
distributions was dictated by its flexibility in capturing a variety of possible shapes to portray 282 
within-phase uncertainty, including uniform distribution and single-peaked symmetric 283 
distributions comparable to the Gaussian. In order to evaluate the sensitivity of our outcome 284 
to the choice of this model we also fitted Gaussian and Uniform models which produced results 285 
that were qualitatively comparable to the ones presented in the paper (see electronic 286 
supplementary figures 1-4). 287 
 288 
 289 
Radiocarbon dates associated with the same event (e.g. the same ceramic vessel) were 290 
combined using the R_Combine function in OxCal after removing potential outliers (Bronk 291 

Ramsey 2009b) using a normal distribution model with a mean of zero and a standard 292 

deviation of 2. This was achieved by removing the date with the highest outlier probability and 293 

by repeating the process iteratively until the overall agreement index was above 60 and the 294 

Chi-squared test was non-significant at ༾=0.05.  295 
 296 
The initial fitting of the trapezoidal model for the 42 ceramic phases returned an overall 297 
agreement index of 48. We thus removed a total of 46 dates with agreement indices below 60 298 
and refitted our model achieving an overall agreement index of 110.86. We then used the 299 
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MCMC_Sample function in OxCal and extracted 5,000 posterior samples of the four 300 
trapezoidal distribution parameters for each of the 42 ceramic phases.  301 

Monte-Carlo Simulation 302 

We simulated calendar dates for each pit-dwelling in three steps: 303 
 304 

1. Sample the four parameters of the trapezoidal model from the joint posterior 305 
distribution of each of the 42 ceramic phases. 306 

2. Randomly assign a unique phase to all pit-dwellings associated with multiple 307 
candidate phases. The probability of a candidate phase being selected was 308 
proportional to its standard deviation, calculated using the equation provided by Dorp 309 
and Kotz (2003) for trapezoid distributions. For example, if a residential unit was 310 
assigned to phases I, II, and III, with standard deviations 20, 30, and 50, the 311 
probability of the assigned phase being I is equal to 0.2 (i.e. 20/(20+30+50) ).  312 

3. Randomly draw a calendar date from the trapezoidal distributions defined in step 1 313 
and associated with a given residential unit in step 2. 314 

 315 
This routine ² which effectively takes into account within-phase, phase assignment, and 316 
phase boundary uncertainties ² was repeated 5,000 times. For each repetition set we also: 317 
a) computed a univariate kernel density estimate of the simulated dates; and b) grouped and 318 
counted residential units falling within 100-years sized temporal blocks between 8,000 and 319 
3,000 cal BP (i.e. 8,000-7,901 cal BP; 7,900 - 7,801 cal BP; etc.). 320 

Summed Probability Distribution of Radiocarbon Dates 321 

A Summed Probability Distribution of Radiocarbon Dates (SPD) was created using the rcarbon 322 
v.1.3 package (Bevan and Crema 2019).  We calibrated the 14C dates using the IntCal13 323 
calibration curve (Reimer et al. 2013) and without normalisation to avoid artificial peaks (cf. 324 
Weninger et al. 2015). Marine dates were calibrated with the Marine13 calibration curve 325 
(Reimer et al. 2013), using a �R of 88 and an associated error of 33 years (Shishikura et al. 326 
2007). To account for inter-site variation in sampling intensity, we summed to unity dates from 327 
the same site with a median calibrated age inter-distance of 200 years (cf. Timpson et al 2014, 328 
see electronic supplementary figure 5 for sensitivity analysis with different inter-distance 329 
settings). The resXlting 768 ³bins´ haYe been combined to prodXce the final SPD cXrYe. To 330 
facilitate the comparison between different proxies we aggregated the summed probabilities 331 
using the same 100-years temporal blocks between 8,000 and 3,000 cal BP used for the pit-332 
dwelling data. We also sampled random calendar dates from each of the 768 bins and 333 
generated time-series of bin counts aggregated using the same 100-years temporal blocks. 334 
This process was repeated 5,000 times in order to produce the same number of frequency 335 
time-series as the residential units. 336 

Correlation Analysis and Model Testing 337 

We assessed the correlation between the two demographic proxies by computing 5,000  338 
Pearson¶s correlation coefficients between randomly paired100-years block time-series of 339 
radiocarbon bins and pit-dwelling counts.  To explore possible temporal variations in the extent 340 
of correlation between the two proxies we also calculated their rolling correlation using a 341 
moving window of 10 time-blocks, equivalent to a 1,000 years.  342 
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 343 
In order to further explore differences between the two demographic proxies, while taking into 344 
account the idiosyncrasies of the calibration process and the effects of sampling error, we also 345 
employed a modified version of the Monte Carlo testing approach used in Shennan et al. 346 
(2013, see also Timpson et al. 2014). The original approach consists of 1) fitting a theoretical 347 
growth model to the observed data; 2) simulating the same number of dates as the observed 348 
data in calendar time using the fitted model; 3) back-calibrating each date in 14C age and 349 
calibrating it back in calendar time; 4) generating a realisation of the theoretical SPD by 350 
summing the dates; and 5) repeating steps 1 to 4 multiple times to generate a simulation 351 
envelope to which the observed SPD can be compared to. We made two notable changes to 352 
this procedure. First, we generated our simulation envelope (representing our theoretical 353 
expectation) from the mean value in the composite kernel density estimate of the residential 354 
data rather than a fitted exponential curve. Thus, our null hypothesis was that changes in the 355 
density of radiocarbon dates are comparable to changes in the density of residential units. 356 
Second, we compared observed and simulated annual growth rates rather than the raw SPDs 357 
to avoid the impact of early divergences in defining later differences between the two proxies.  358 

Results 359 

Figure 1 shows the posterior distribution of the trapezoidal model parameters of the forty-two 360 
Jǀmon ceramic phases we examined. Although the Bayesian model did not include any 361 
constraints on the temporal relationship between phases, our results confirmed the general 362 
sequence expected from the literature, particularly Zhen the ³core stage´ of each phase (i.e. 363 
the interval between the parameters b and c) was considered. In very few cases the early tail 364 
of the distribution (i.e. parameter a) exhibited reverse chronological order (e.g. S2.1a is 365 
estimated to be more recent than S2.2a; S6a is more recent than S7a), but these exceptions 366 
were limited to chrono-typological phases of the Initial Jǀmon period Zhere the nXmber of 367 
diagnostic elements in the ceramics are limited.  368 
 369 
The increase in the number of more complex decorative elements does undoubtedly play a 370 
significant role in explaining the more detailed periodisation and consequently the shorter 371 
duration of ceramic phases in some temporal windows, most notably within the Middle Jǀmon 372 
period. These shorter phases (some possibly with sub-century durations) often have a higher 373 
degree of oYerlap in their interYal. In the case of the Middle Jǀmon period, this pattern can at 374 
least in part be explained by the presence of plateaus in the calibration curve (particularly 375 
around 5,300 to 5,000 cal BP). More in general, and aside from the genuine existence of 376 
overlaps between phases, it is worth considering that the model does not take into account 377 
the spatial dimension, and consequently the diffusion of particular ceramic styles and the 378 
resulting temporal discrepancy across sites located in different regions. These are, however, 379 
acceptable limitations as the pit-dwelling data we examined are from central Japan which has 380 
the most substantial contribution to the data we used to define our chronological model. 381 
Nonetheless, targeted studies on smaller regions and/or explicit incorporation of the spatial 382 
dimension are desirable if more accurate regional comparisons are being sought.  383 
 384 

[FIGURE 1 HERE] 385 
Figure 1. MaUgLQaO SRVWeULRU dLVWULbXWLRQ Rf Whe WUaSe]RLdaO PRdeO SaUaPeWeUV fRU Whe 42 JǀPRQ 386 
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ceramic phases. 387 

[FIGURE 2 HERE] 388 

 389 
Figure 2 CRPSRVLWe NeUQeO deQVLW\ eVWLPaWeV deULYed fURP Whe VLPXOaWed daWeV Rf JǀPRQ SLWhRXVeV 390 
from Southwest Kanto (a) and Chubb highland (b). The envelope represents the 95% percentile interval 391 
of the kernel densities across the 5,000 simulations, and the solid line the average value for each 392 
calendar date. 393 
 394 
Figure 2 shows the composite plots of the kernel density estimates (CKDE; Brown 2017) 395 
obtained from each of the 5,000 simulates sets of pit-dwelling dates from Southwest Kanto 396 
(Kanagawa, Saitama, and Tokyo prefectures; figure 2-a) and Chubu highlands (Yamanashi 397 
and Nagano prefectures; figure 2-b). Both sets of curves capture the main demographic 398 
flXctXations depicted in ImamXra¶s original stXd\ (cf. fig.2 in ImamXra 1997), inclXding the 399 
Earl\ Jǀmon rise and fall (ca. 6,500a5,800 cal BP) and the minor oscillations between the end 400 
of Middle Jǀmon and the first half of the Late Jǀmon period (ca. 4,600-4,000 cal BP) observed 401 
in SoXthZest Kanto, and most notabl\ the Middle Jǀmon boom and bXst (ca. 5,500-4,600 cal 402 
BP) observed in both regions.  403 

[FIGURE 3 HERE] 404 

 405 
Figure 3. Temporal frequencies of residential units (a) and summed probability of radiocarbon dates 406 
(b) and their correlation over a 1,000 years moving window (c). Error bars in panel a and the grey 407 
envelope in panel c are based on 95% percentile interval across the 5,000 Monte Carlo simulations.  408 
 409 
The combined time-series of the two regions (figure 3-a) shows broad similarities in shape 410 
with the SPD generated from the radiocarbon dates of the five prefectures (figure 3-b). The 411 
latter also exhibits boom and bust events over the same interval, although with some 412 
discrepancies in their timing (see below), the lack of a rise-and-fall pattern in the mid 5th 413 
millennium cal BP, and a comparatively higher density of dates from 4,700 cal BP onwards. 414 
Despite these differences, the overall sample correlation between the two time-series across 415 
the 5,000 Monte-Carlo iterations was high (median: r =0.65; 95% percentile interval: 0.51 - 416 
0.75) and the 1,000 years rolling correlation (figure 3-b) suggest a generally high agreement 417 
between the time-series of radiocarbon dates and pit-dwellings. 418 
 419 
The discrepancies in the timing of the Middle Jǀmon rise and fall betZeen the 6th and the 5th 420 
millennium cal BP are further highlighted in figure 4,  where the observed annual growth rate 421 
computed from the radiocarbon dates is compared against a theoretical envelope of growth 422 
rates simulated from the observed residential data. The analysis confirms intervals when the 423 
SPD-based growth rates diverge significantly from the expectation derived from residential 424 
data, with lower rates around 5,500-5,350 and 5,100-4,900 cal BP, and higher rates around 425 
4,800-4,300 and 4,000 cal BP. 426 
 427 

[FIGURE 4 HERE] 428 

 429 
Figure 4. Statistical comparison of the observed annual growth rate in the SPD (solid line) and the 430 
simulated 95% percentile envelope based on the temporal frequencies of residential units obtained 431 
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from composite kernel density estimate analysis. Regions highlighted in red indicate intervals where 432 
the SPD-based growth rate is higher than the growth rates based on pit-dwelling density.  Regions 433 
highlighted in blue suggest the opposite (i.e. lower growth rates in the SPD). The temporal range of 434 
the analyses is reduced by 400 years on both ends to limit edge effects. The global P-value was 435 
equal to 0.0009. 436 

Discussion 437 

The Bayesian chronological model presented here is most likely the first of many attempts in 438 
providing a more accurate chrono-typological sequence for the Jǀmon period. We intentionall\ 439 
decided to not present point-estimates of the start/end date of the ceramic phases to avoid 440 
conveying a false impression of a precision that cannot be realistically achieved. We argue, 441 
instead, that conversions from a relative to an absolute chronological framework should fully 442 
embrace all forms of uncertainty, including those defining the chronological boundaries of 443 
individual phases and periods.  444 
 445 
Our case study demonstrates the importance and implications of defining a statistical 446 
framework for chrono-typological phases. This paper constitutes the third attempt, after 447 
Imamura (1997) and Crema (2012), in generating a time-series of pit-dwelling frequency 448 
based on the same original data. Although both previous works and our analyses have 449 
highlighted comparable fluctuations in the number of residential units, there are some notable 450 
differences in the timing of these events that are worth noting. Perhaps the most relevant case 451 
is the Middle Jǀmon rise and fall.  ImamXra¶s (1997) original Zork Zas based on an earlier 452 
chronolog\ based on Xncalibrated dates, Zith the rise of the Middle Jǀmon ³boom´ dated at 453 
ca. 5,000 bp (ca. 5700 cal BP) and the decline after 4,400 bp (ca 5000 cal BP), Zhile Crema¶s 454 
(2012) reassessment suggested the rise starting from 5,500 cal BP and the decline from 4,700 455 
cal BP. Our analysis has instead revealed that the increase in population size started at 5500 456 
cal BP (confirming the results of Crema 2012) with the decline stage starting as earlier as 457 
4,900 cal BP (thXs someZhat closer to ImamXra¶s original estimate).  The implication of an 458 
earlier onset of the Middle Jǀmon decline is particXlarl\ noteZorth\ as it cast further doubts 459 
on the established narrative of a mid-5th millennium cooling or the 4.2k event as a driver of 460 
the population decline (c.f. Imamura 1997, Yasuda 2004, Suzuki 2009, Tsuji 2013, Taniguchi 461 
2019). 462 
 463 
The absolute chronological framework offered by the combination of Bayesian modelling and 464 
Monte-Carlo simulation has also enabled an evaluation of the dates as data approach, 465 
following similar works carried out by few others (e.g. Palmisano et al. 2017,  Tallavara and 466 
Pesonen 2018). Our results indicate an overall agreement across the two proxies, reinforcing 467 
the evidence of multiple episodes of possible demographic fluctuations between 8,000 and 468 
3,000 years ago. However, we also identified several notable discrepancies: the SPD curve 469 
shows an earlier timing of the Middle Jǀmon rise-and-fall and an overall higher relative density 470 
of dates dXring the Late and Final Jǀmon (i.e. ca 4,500 to 3,000 cal BP).  471 
 472 
One plausible explanation for these discrepancies is the major shift from nucleated to a 473 
dispersed settlement pattern betZeen the Middle and the Late Jǀmon periods (TanigXchi 474 
2005, Crema 2013, see Palmisano et al. 2017 for similar interpretations in Central Italy). The 475 
binning protocol used in this paper and elsewhere (cf. Timpson et al. 2014) reduces the effect 476 
of inter-site variation in sampling intensity, but effectively makes the SPD a proxy of settlement 477 
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density that disregards size variation. It follows that if the number of settlements is reduced, 478 
but the average size increased due to nucleation, the SPD might signal a decline while the 479 
time series of residential density show the opposite trend. Similarly, an episode of dispersion 480 
and settlement fission to smaller communities might show an increase in the SPD (larger 481 
number of sites) matched with a decrease in residential density (smaller number of residential 482 
units).  483 
 484 
Thus one possible hypothesis that could explain the mismatch observed in figure 3 can be 485 
summarised as follows: 1) the faster (and earlier) increase in the SPD around 5400 cal BP is 486 
the result of an episode of territorial expansion and repeated episodes of settlement fission; 487 
2) the subsequent decline in the SPD during the peak in residential density is the outcome of 488 
settlement nucleation and population growth; and 3) the overall higher relative density of SPD 489 
during the first few centuries of the 5th millennium is a signature of fission events to smaller 490 
settlements. A similar small mismatch between site counts and dwelling counts have been 491 
observed elsewhere and has indeed been explained by episodes of nucleation/dispersions 492 
(e.g. Crema 2013, see also below). Unfortunately, the pit-dwelling count data provided by 493 
Suzuki does not record membership of individual pit-dwelling to specific settlements, and 494 
hence this hypothesis cannot be directly tested in this context by comparing the SPD to a time-495 
series of occupied settlements.  496 
 497 
Archaeological evidence does, however, suggest several significant changes in the settlement 498 
pattern dXring the second half of the Middle Jǀmon period (phases C11~C14 here). 499 
Stratigraphic evidence shows an overall decrease in the occupational span of individual pit-500 
dwellings between the Kasori E2 (phase C11) and the Kasori E3 (phase C12) phases, with 501 
the latter characterised by shorter, repeated re-occupations in large nucleated settlements 502 
(Kobayashi 2016). As a consequence, the same temporal window was characterised by a 503 
higher number of residential units that do not necessarily translate into an increase in the 504 
underlying population size. During the subsequent Kasori E4 phase (phase C13) these large 505 
settlements fissioned into smaller sites, with a much shorter occupational span that suggests 506 
an increased level of residential mobility (Kobayashi 2004). This shift from nucleated to 507 
dispersed settlement patterns have been commonly explained as the consequence of a 508 
change in subsistence economy triggered by the 4.2 cooling event (c.f. Suzuki 2009). 509 
However, the possibility of local resource overexploitation cannot be dismissed, especially 510 
considering how the cooling event has most likely occurred after the shift in settlement pattern 511 
and the decline in the number of pit-dwellings (Kobayashi 2004). An interesting parallel could 512 
also be draZn to the groZth and decline of major Jǀmon settlements sXch as Sannai-513 
Maruyama in Northern Japan. Habu (2008) hypothesise that a plant-based subsistence 514 
intensification (e.g. chestnuts and other nuts) sustained the initial growth of this and possibly 515 
other settlements in the region. This increased over-specialisation, hoZeYer, made Jǀmon 516 
communities overpopulated and increasingly less resilient to episodes of minor climatic 517 
fluctuations affecting plant productivity, eventually leading to the demise of large nucleated 518 
settlements. Similar µrigidit\ traps¶ (Carpenter and Brock 2008) might haYe occXrred in Central 519 
Japan as well, but further studies integrating demographic, climatic, and subsistence data will 520 
be necessary to explore this hypothesis in detail. 521 
 522 
The availability of an absolute chronological framework enables us to make tentative estimates 523 
of the annXal percentage groZth rate obserYed dXring the Jǀmon period. For e[ample, the 524 
annXal groZth rate dXring the Middle Jǀmon ³boom´ (betZeen 5,500-5,400 and 5,000-4,900 525 
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cal BP) was 0.45% (95% percentile interval: 0.33~0.74%) for the pit-dwelling data and 0.09% 526 
(95% percentile interval:  -0.01~0.21%) for the radiocarbon dates,  an order of magnitude 527 
above the long-term average recorded for hunter-gathers elsewhere (see Zahid et al. 2016) 528 
but within the range expected for shorter-term fluctuations (see also Bettinger et al. 2016).  529 
The discrepancies between the two figures are in part due to the different timing of the events 530 
(see figure 3), and the fact that the SPD should be interpreted as a proxy of settlement growth 531 
rate rather than population growth rate.  532 
 533 
While these are promising results, there are several challenges both from the standpoint of 534 
paleo-demographic inference and the methods presented here. Aside from shifts in settlement 535 
pattern, we also need to consider potential changes in the duration of archaeological events. 536 
Both intra- and inter-annual variations in the length of site occupation could change the ratio 537 
between site counts and population size and hence, for example, potentially lead to false 538 
signals in SPD depending on the choice of the bin size for aggregating radiocarbon dates from 539 
the same site. The same problem applies to the duration of residential units (see above). 540 
Ethnographic accounts and archaeological evidence suggest that pit-dwellings can have 541 
different duration, lasting somewhere between 3 to 15 years (Watanabe 1986, Muto 1995). 542 
Variations in residential stability can thus yield higher or lower number pit-dwellings in a given 543 
time-ZindoZ. In the case of Jǀmon period, Koba\ashi (1991) has inferred from the nXmber of 544 
seasonal rebXildings of hearths a ma[imXm Xse of 8 \ears for Initial Jǀmon pit-dwellings, while 545 
for the late Middle Jǀmon period, stratigraphic eYidence of overlapping features and 14C dates 546 
suggest an average occupation span of ca. 13 years, suggesting temporal variations in the 547 
use-life of residential units (Kobayashi 2004). Habu (2001) has also extensively examined 548 
residential data and lithic assemblage of the second half of the Earl\ Jǀmon period in the same 549 
area, providing evidence for sub-regional variations and temporary shifts between collector 550 
and forager-like strategies. 551 
 552 
The development of a reliable regional Bayesian chronological model of archaeological 553 
phases has also its own challenges. While in stratigraphic contexts many of the assumptions 554 
that act as priors and/or constraints in the chronological modelling can be well supported, the 555 
same degree of confidence cannot be easily justified when we are considering multiple sites 556 
located in a wider geographic area and examined potentially with different sampling strategies. 557 
For e[ample, a strongl\ imbalanced data might ³pXll´ the posterior estimates of a particXlar 558 
ceramic phase towards the occupation period of a particular site that happened to have a 559 
larger sample of radiocarbon dates. The use of hierarchical models (cf. Banks et al. 2019), or 560 
the formal integration of the spatial dimension are desirable directions to be undertaken in 561 
order to solve at least some of these issues.   562 

Conclusion 563 

Notwithstanding the challenges entailed by developing Bayesian models of chrono-typological 564 
sequences, the ability to use an absolute chronological framework while simultaneously 565 
accounting for different forms of uncertainty is a crucial step for reusing legacy data in 566 
archaeology. Our case study showcases both the necessity and the potential benefits of such 567 
an endeavour, particularly in the context of prehistoric demography where the lack of 568 
alternative proxies to radiocarbon dates can severely limit the assessment of the reliability of 569 
demographic reconstructions as well as the opportunity to identify and test key covariates and 570 
hypotheses. 571 
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 572 
From the perspectiYe of Jǀmon archaeology, the comparison between SPDs and residential 573 
data has provided an initial assessment of the temporal scale at which settlement dynamics 574 
can no longer be ignored, and the choice of the population proxy becomes relevant. At coarser 575 
temporal scales of 500~1000 years the agreement between the two proxies is robust and 576 
reassuring, but below these thresholds, we identified some noticeable differences in the timing 577 
and the magnitude of specific fluctuations that need to be accounted for. These conclusions 578 
are context-specific and while they cannot be easily extrapolated to other regions or periods, 579 
offer the foundation for future research in prehistoric demography.   580 
 581 
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 589 

Figure Captions 590 
Figure 1. Marginal posterior distribXtion of the trape]oidal model parameters for the 42 Jǀmon 591 
ceramic phases. 592 
 593 
Figure 2 Composite kernel densit\ estimates deriYed from the simXlated dates of Jǀmon pit-dwellings 594 
from Southwest Kanto (a) and Chubb highland (b). The envelope represents the 95% percentile interval 595 
of the kernel densities across the 5,000 simulations, and the solid line the average value for each 596 
calendar date. 597 
 598 
Figure 3. Temporal frequencies of residential units (a) and summed probability of radiocarbon dates 599 
(b) and their correlation over a 1,000 years moving window (c). Error bars in panel a and the grey 600 
envelope in panel c are based on 95% percentile interval across the 5,000 Monte Carlo simulations.  601 
 602 
 603 
Figure 4. Statistical comparison of the observed annual growth rate in the SPD (solid line) and the 604 
simulated 95% percentile envelope based on the temporal frequencies of residential units obtained 605 
from composite kernel density estimate analysis. Regions highlighted in red indicate intervals where 606 
the SPD-based growth rate is higher than the residential density based growth rates.  Regions 607 
highlighted in blue suggest the opposite (i.e. lower growth rates in the SPD). The temporal range of 608 
the analysis is reduced by 400 years on both ends to limit edge effects. The global P-value was equal 609 
to 0.0009. 610 
 611 
 612 
 613 
 614 

 615 

  616 
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Period Ceramic Phases n n (eff.) Sites

End of Upper Palaeolithic S0 16 16 4

S1.1 64 62 16

S1.2 77 77 24

S2.1 94 90 20

S2.2 38 38 8

S4 45 45 24
S5 22 22 10
S6 14 14 6
S7 48 47 14

S8 85 80 21

Z1 56 50 16
Z2 31 29 15
Z3 55 53 8

Z4 16 14 10

Z5 59 55 15
Z6 33 30 15
Z7 29 29 16
C1 10 10 6
C234 19 19 14

C11 41 41 21

61 28

C10 58 58 23

47

Early Jomon

Middle Jomon

C56 22 22 13

C78 33 32 16

C9 61

Incipient Jomon

Initial Jomon

S3 107 107

TabOe



C13 64 63 23
C14 11 11 7

K2 103 65 17
K3 54 49 16
K4 28 25 11
K5 58 48 9
K6 26 24 6
K7 47 43 16
K8 39 38 11
B1 89 83 29
B2 73 58 25
B3 44 41 20
B4 54 51 17
B5 58 54 27
B6 96 52 21

Final Jomon

Late Jomon

K1 37 37 23

C12 106 105 30

Middle Jomon



Kobayashi 2017 Ceramic Phase in Suzuki's Pithouse Data

S0 Mumon doki

S1-1 R\ǌkisenmon-kei

S1-2 Bir\ǌkisenmon-kei; TsXmegaWamon-kei

S2-1 Tsumegatamon-kei; Ōnatsumon-kei

S2-2 Tajǀmon-kei

S3-1
S3-2
S3-3
S3-4
S4 Mito; Lower Tado; Upper Tado; Hosokubo
S5 Shiboguchi; Nojima
S6 Ugajimadai
S7 Lower Kayama; Upper Kayama

S8 Ueno\ama; IrXmi I; IrXmi II ; Ishi\ama; Okkǀshi; 
Tenjinyama; Kaminokidai; Shioya; Shimoyoshii

Z1 Lower Hanazumi
Z2 Sekiyama; Futatsuki; Kaminoki
Z3 Kurohama; Ario

Z4 Moroiso a; Minamiǀhara

Z5 Moroiso b; Uehara
Z6 Moroiso c; Hinata I; Kagobatake I; Shitajima
Z7 Jǌsanbodai; HinaWa II; KagohaWa II
C1 Gor\ǀgadai 1

C2~C4 Gor\ǀgadai 2
C5
C6
C7
C8
C9a
C9bc
C10a
C10b
C10c

C11ab
C11c Daigi 8b; Kasori E2 (EI)*; Sori II; Sori III

Idojiri I;Idojiri III; Katsuzaka 3; Atamadai 4

Daigi 8a; Kasori E1 (EI)* Sori I

Igusa I; Igusa II; Daimaru; Natsushima; Inaridai; 
TaWeno; Inarihara; ƿXra\ama; HanaZadai 1; 
Hanawadai 2; Hirasaka;

Atamadai 1a; Atamadai 1b; Mujinasawa; 
Katsuzaka I; Aramichi
AWamadai 2; AWamadai 3; KaWsX]aka 2; Tǀnai I; 
Tǀnai II;



C12a
C12b
C12c
C13 Kasori E4 (EIV)*; Daigi 10;
 - Kasori EV; Daigi 10;

K1-1
K1-2
K1-3
K2 Horinouchi 1
K3 Horinouchi 2
K4 Kasori B1
K5 Kasori B2
K6 Kasori B3
K7 Takaihigashi; Sǀya
K8 Angyǀ 1; Angyǀ 2
B1 Ōbora B; Angyǀ 3a
B2 Ōbora BC; Angyǀ 3b
B3 Ōbora C1; Angyǀ 3c; Maeura 1
B4 Ōbora C2; Ang\ǀ 3d; Maeura 2
B5 Ōbora A; Chiami; Kǀri I
B6 Ōbora A'; Arami; Kǀri II

Shǀm\ǀji 1;Shǀm\ǀji 2

Daigi 9; Kasori E3 (EII-EIII)*; Sori IV;SoriV
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